Das Röntgen
in der zahnärztlichen Praxis

Wolfgang Brahm
Eric Klinger
Das Röntgen
ing der zahnärztlichen Praxis
Das Röntgen in der zahnärztlichen Praxis
Gesehen und berichtet aus der Sicht einer Auszubildenden

Wolfgang Brahm
Eric Klinger
9. Welches Regelwerk gibt es (RöV)? ... 58
 9.1 Allgemeine Paragraphen ... 61
 9.2 Paragraphen, die vor Anfertigung einer Aufnahme wichtig sind. 63
 9.3 Paragraphen, die nach Anfertigung einer Aufnahme wichtig sind. 64

10. Was muss ich hinsichtlich der Hygiene beachten? 64

 11.1 Arbeitsanweisung 1: Erstellung eines analogen Einzelbildes mit Halbwinkeltechnik 66
 11.2 Arbeitsanweisung 2: Erstellung eines digitalen Einzelbildes (Speicherfolie) mit Paralleltechnik ... 67
 11.3 Arbeitsanweisung 3: Erstellen eines analogen OPGs 69
 11.4 Arbeitsanweisung 4: Erstellen eines analogen FRS 71

12. Was muss ich regelmäßig tun? ... 73
 12.1 Konstanzprüfung bei analogen Geräten ... 73
 12.2 Das Vorgehen beim intraoralen Gerät ... 75
 12.3. Das Vorgehen beim OPG ... 76
 12.4 Die Auswertung der Konstanzaufnahme beim intraoralen Röntgengerät. 77
 12.5. Das Vorgehen bei digitalen Röntgengeräten 79

13. Wer überprüft mich bzw. die Praxis? (Sachverständiger, zahnärztliche Stelle). ... 83
 13.1 Qualitätssicherung durch die Zahnärztlichen Stellen 83
 13.2 Qualitätssicherung durch Sachverständige .. 84

 14.1 Die Filmlagerung ... 84
 14.2 Die Einstelltechnik ... 85
 14.3 Die Belichtung ... 85
 14.4 Filmverarbeitung .. 86

15 Vita .. 94
 Dr. Wolfgang Brahm ... 94
 Dr. Eric Klinger ... 95

Beiträge:
 Eric Klinger: Kapitel 1, 2, 3, 4, 5, 6, 7, 10, 11
 Wolfgang Brahm: Kapitel: 8, 9, 12, 13, 14
Vorwort

Mit der Änderung der Röntgenverordnung im Jahre 2005 kamen einige Änderungen und Neuerungen auf die Zahnarztpraxen zu, insbesondere aber auch viele Herausforderungen auf die Auszubildenden zur Zahnmedizinischen Fachangestellten im Bereich Radiologie.

Es war unser Ziel, Ihnen nicht nur umfassend die gesamte Bandbreite dieses wichtigen Themas zu präsentieren. Neben anschaulichen Erklärungen der theoretischen Inhalte haben wir uns besonders um eine handlungsorientierte Konzeption bemüht. Hierzu wird Sie unsere Auszubildende „Wilma“ durch das Buch begleiten:

Wilma ist im zweiten Ausbildungsjahr, hat vor sechs Monaten die Zwischenprüfung abgelegt und wird nun durch Dr. Spranger und Dr. Specht in das Wissen des Röntgens eingeführt. Mit Hilfe dieses Buches kann sie das Erlernte prüfen.

Viel Spaß und viel Erfolg dabei!

Wolfgang Brahm und Eric Klinger
1. Geschichte des Röntgens

Durch Zufall entdeckte Wilhelm Röntgen 1895, dass eine Kathodenstrahlröhre, die er mit dickem schwarzem Papier umhüllte, eine Leinwand zum Leuchten brachte, die in einiger Entfernung von dieser Apparatur stand. Das heißt, dass diese bis dahin unbekannten „X-Strahlen“, wie er sie nannte, in der Lage waren, durch „Wände“ hindurchzugehen. Es stellte sich schnell heraus, dass diese Strahlen aber nicht nur durch „Wände“, sondern auch durch den menschlichen Körper gingen und man so das Innere (d. h. Knochen, Zähne u. ä.) auf einer Fotoplatte sichtbar machen konnte, die hinter der „Wand“ (bzw. dem Körper) lag. Die erste „Patientin“, bei der Wilhelm Röntgen eine solche Körperaufnahme machte, war seine eigene Frau.

In der Zahnmedizin war Otto Walkhoff der erste, der 1896 eine Aufnahme von seinen Backenzähnen machte. Dabei musste er die ganze Belichtungszeit von 25 Minuten reglos verharren!

2. Was sind die Ziele des Röntgens?

Im Rahmen der dualen Ausbildung (theoretische Grundlagen in der Berufsschule, praktische Fähigkeiten in der Ausbildungspraxis) sollten Sie sich folgende Ziele setzen und auch nach Erwerb des Kenntnisnachweises immer beherzigen:

1. Detailgetreue, grösstengleiche und kontrastreiche Abbildungen erstellen, die entsprechend der rechtfertigenden Indikation des Strahlenschutzverantwortlichen (Chef/Chefin) gut diagnostizierbar sind.
2. Dabei die geringstmögliche Strahlenbelastung für Patient und Behandler erzeugen.
3. Was sind Röntgenstrahlen und welche Eigenschaften haben sie?

Um Ihnen das zu erklären, stellen Sie sich bitte Folgendes vor:

Sie haben gerade entdeckt, dass eine vom Haushaltsstrom gespeiste Strahlenquelle, die Sie dick umhüllt haben, eine mit Leuchtmarker bemalte Leinwand zum Leuchten bringt (Abbildung 2). Das geschieht vollkommen unabhängig davon, ob der Raum taghell oder dunkel ist.

Weiterhin können Sie den „Leuchtschirm“ auch weiter weg stellen, trotzdem leuchtet er, wenn Ihre Strahlenquelle aktiv ist.

Das Einzige, was Sie wissen, ist, dass Sie in einer dunklen Kiste Strahlen erzeugt haben, die offenbar durch „Wände“ gehen und unsichtbar sind.

Darüber hinaus wissen Sie, dass es in unserer Umgebung alle möglichen „Strahlen“ oder „Wellen“ gibt, die sich meistens dadurch kennzeichnen, dass sie unsichtbar sind und irgendetwas „leiten“, „transportieren“ oder „bewirken“.
3. WAS SIND RÖNTGENSTRAHLEN UND WELCHE EIGENSCHAFTEN HABEN SIE?

Beispiele: Lichtstrahlen, „Handy“-strahlen, radioaktive Strahlen, Strahlen für Radio oder Fernsehen, Microwelle, ultraviolette Wellen.

Um herauszubekommen, wie Ihre Strahlen funktionieren, werden Sie Folgendes tun: Sie **vergleichen** Ihre „X-Strahlen“ mit diesen Beispielen, um Gemeinsamkeiten und Unterschiede herauszuarbeiten. Weiterhin möchten Sie wissen, ob Sie erneut und für jeden erklärbar eine Apparatur bauen können, die wiederum solche „X-Strahlen“ erzeugt!

Und auf diese Weise stellen Sie folgende **13** wichtige Eigenschaften Ihrer „X-Strahlen“ fest:

1. Röntgenstrahlung ist eine elektromagnetische Wellenstrahlung

Was bedeutet das nun? Stellen Sie sich vor, dass Sie einen Ball werfen wie in Abbildung 3. Stellen Sie sich vor, dass Sie einen Ball werfen wie in Abbildung 3.

Abbildung 3

![Abbildung 3](image)

Was stellen Sie fest?

1. Es gibt eine Quelle für den geworfene Ball, nämlich Sie.
2. Der geworfene Ball beschreibt eine bestimmte Bahn, die hier bogenför mig aussieht. Sie können die Richtung vorher festlegen.
3. Der Ball ist ein „Energiepaket“. Je fester Sie werfen, umso weiter wird der Ball fliegen bzw. eine große Energie auf den getroffenen Gegenstand ausüben.
4. Wenn der Ball irgendwo auftrift, wird er seine Energie so umwandeln, dass er z. B. zurückprallt oder einen anderen Gegenstand weiterstößt.
5. Stellen Sie sich abschließend vor, dass Sie nicht nur einen Ball, sondern unendlich viele Bälle werfen, und zwar alle mit ein und derselben Geschwindigkeit und mit einer bestimmten Anzahl pro Sekunde, z. B. 5 Bälle.

Was hat das mit den elektromagnetischen Wellen (Strahlen) zu tun?
1. Es gibt immer eine Quelle für Strahlen, also etwas, was diese Strahlen produziert. Die Strahlen selbst bestehen aus unendlich vielen, körperlosen, energiegeladenen Teilchen, die sich alle in der gleichen Richtung bewegen, so genannten Photonen (die Photonen stellen Sie sich einfach wie Ihre Bälle vor).

3. Die Energie dieser elektromagnetischen Welle ist umso höher, je kürzer der zeitliche Abstand (= Frequenz = Häufigkeit pro Sekunde) ist. Da die Geschwindigkeit der Wellen immer gleich ist, ist die Häufigkeit abhängig von der Wellenlänge. Diesen Abstand misst man in „nm“, also in Milli- onsten Bruchteilen eines Meters. Dabei bedeutet: kurze Wellenlänge = kurzer Abstand zwischen den Wellen = hohe Frequenz = energiereich!
Das Röntgen in der zahnärztlichen Praxis

Der Bereich Radiologie stellt ebenso große Anforderungen wie Herausforderungen an Auszubildende zur Zahnmedizinischen Fachangestellten. Insbesondere seit Aktualisierung der Röntgenverordnung hat das zahnärztliche Fachpersonal viele Änderungen und Neuerungen zu beachten.

Die Autoren Wolfgang Brahm und Eric Klinger, beide ausgewiesene Röntgen-Experten, haben für die zfv-Buchreihe Praxisteam das Thema „Röntgen“ leicht verständlich und didaktisch optimal aufbereitet. Neben anschaulichen Erklärungen der theoretischen Inhalte haben sie sich besonders um eine handlungsorientierte Konzeption bemüht.

Die Publikation „Das Röntgen in der zahnärztlichen Praxis“ stellt eine probate Arbeitshilfe für Auszubildende dar, ihr bereits erlerntes Wissen zu überprüfen und sich gezielt auf ihre Röntgenprüfung vorzubereiten.

Aus dem Inhalt:
• Geschichte des Röntgen
• Eigenschaften von Röntgenstrahlen
• Röntgen in der Zahnheilkunde
• Vermeidung von negativen Folgen beim Röntgen
• RöV
• Qualitätssicherung
• Arbeitsanweisungen